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Abstract-General expressions are presented for the threedimensional and unsteady heating of a finite 
solid rectangular parallelepiped under the intluence of an arbitrary volume heat source and an arbitrary 
initial temperature distribution when convective type of time-de~ndent boundary conditions are pre- 
scribed on the six plane surfaces. These expressions given in various forms and not available hitherto, 
contain the solution of numerous special problems of technological importance. Corresponding general 
expressions for the rectangle and for the slab are deduced as limiting cases. The particular problem treated 

recently by Cobble is shown to be a very special case of the results derived here for the parallelepiped. 
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function defined by equation (55); 
internal heat source per unit time and per unit volume; 
internal source related to Q by equation (9); 
unsteady temperature distribution defined by equations (l), (2), (3), and 
related to T by equation (4) ; 
unsteady temperature distribution defined by equations (5), (6), (7), and 
given by expression (15), (20) or (21) ; 
pseudo-steady temperature distributions of order zero, defined by equations 
(18) and (19); 
pseudo-steady temperature distribution defined by equations (26) and (27) 
and given by expression (33); 
two-dimensional unsteady temperature distribution given by expression (60) 
(62) or (63); 
two-dimensional pseudo-steady temperature distribution given by expression 

(65), (66) or (69); 
one-dimensional unsteady temperature distribution given by expression (74), 
(75) or (76); 
one dimensional pseudo-steady temperature distribution given by expression 
(77) or (78); 
time ; 
defined in equations (25); 
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pseudo-steady temperature distribution defined by equations (34) and (35), 
and given by expression (41) ; 
two-dimensional pseudo-steady temperature distribution given by expression 

(72); 
one-dimensional pseudo-steady temperature distribution given by expression 

(79); 
pseudo-steady temperature distribution defined by equations (42) and (43), 
and given by expression (49) ; 
two-dimensional pseudo-steady temperature distribution given by expression 

(73); 
pseudo-steady temperature distribution defined by equations (50) and (51) 
and given by expression (56); 
Cartesian coordinates; 

X,(x), Y,(y), Z,(z), eigenfunctions defined by equations (10); 
X,(a), Y,(b), Z”(c), defined in equations (14). 

Greek symbols 
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eigenvalues defined by equations (11) ; 
Kronecker delta; 
defined by equation (46); 
defined by equation (58) or (59); 
defined by equation (67); 
thermal diffusivity ; 
Green’s function defined by equation (68); 
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defined by equation (17) ; 
defined by equation (61); 
defined by equation (30); 
defined by equation (38); 
defined by equation (70); 
Green’s function defined by equation (71); 
finite trigonomet~c tr~sfo~s of ( ) defined by equations (22a), (23a), (24a), 
respectively. 

INTRODUCTION 

IN A recent issue of this journal Cobble [l] studied a transient heat conduction problem in a two- 
dimensional rectangular region under the influence of an arbitrarily prescribed internal heat source 
and with arbitrary initial condition. The boundary conditions employed in [l J are assumed to be 
homogeneous and of convective type, with equal heat transfer coefficients on the four edges. In the 
equation of heat conduction, Cobble [l] included a heat sink term proportional to temperature and 
representing the heat loss by convection from the two lateral sides of the rectangle. 

In this study we consider a more general and complete problem for a rectangular parallelepiped of 
side lengths 2a, 2b, 2c and present, in various forms, the general solution for the unsteady temperature 
distribution. From these, the solution of numerous special unsteady and steady heat flow problems 
in rectangular regions follow readily through appropriate specialization of the volume- and surface 
heat sources, and the boundary- and initial conditions employed in the present study. Some of these 
special problems have been solved by Carslaw and Jaeger [Z]. The end result expressed by equation 
(45) of Cobble [1] . al IS so readily deduced as another special case from one of the expressions estab- 
lished here for the parailelepiped. 

PROBLEM STATEMENT 

Consider a three-dimensional rectangular stationary region enclosed by the planes x = +a, 
y = + 6, z = It c in the Cartesian coordinate system Oxyz. The flow of heat by conduction is governed 
by the equation 

a2T’ + a?r azz-f 1 dT - - - - 
ax2 ay2 + a22 kT’ f + Q’(x, Y, z, t) = K-;ii2- 

(1x1 < 4 1~1 < b, 1~1 < c, t > 0) 

where 7”’ = T’(x, y, z, t) is the unsteady temperature distribution and kT’ represents a heat source 
proportional to temperature. Associated with (I) are the boundary conditions 

(-)‘K!$ + hiT' = fQ,z,t) (x = (-)‘a, lyl < b, 1~1 <c, t>O; i= 1,2) @a) 

(-)‘Kg + hiT’ = fi(x, Zg t) (1x1 < a, y = (-)‘b, Iz/ < c, t > 0; i = 3,4) (2b) 

(/xf<a, /y/<b, z=(--)ic, t>O; i=5,6) (2~) 

where hi > 0 (i = 1,2,. . . ,6) are the surface heat-transfer coefficients and fi(i = 1,2,. . . ,6) are 
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integrable functions prescribed on the six surfaces. The statement of the problem is completed by 
specifying the initial conditions as 

T’ = ~(x,y, z) (1x1 < a, jyl G b, IzI < c, t = 0) (3) 

where F(x, y, z) is a prescribed integrable function representing the initial temperature distribution 
in the parallelep~ped. 

The problem can be restated in a somewhat simpler form by use of the well-known substitution of 

T’(x, y, 2, t) = T(x, y, z, t) ewkrt 

whereby the system of equations (1) (2) and (3) becomes 

~+~+~+~Q(x,y.z,t)=;~ 
8Y2 

(1x1 < 4 1~1 < b, 1~1 cc, t > 0) (5) 

where 

(-i’K~+hi~=.iiO’,Z,t) (~=(-)“a, lyl<b, IZ/<C, t > 0; i = 1,2) 

(-)‘K~ + hiT = f;:(X,Z,t) (1x1 < a, y=(-)ib,JZI<C, t>o; i=3,4) 

(-)‘K~ + hiT = f;(x,y,t) (1x1 < a, lyl < b, z = (-)‘c, t > 0; i = 56) 

T = F(x, y, z) (ix/ d a, /y/ < b, /z/ < c, t = 0) 

fi = f {ekKt (i = 1,2,. . . ,6) 

Q = Q’ ekKt 

SOLUTION 

(4) 

(6a) 

(6b) 

(6c) 

(7) 

(8) 

(9) 

For the solution of T(x, y, z, t) from the system of equations (5), (6) and (7), we define the following 
auxiliary functions 

(loa) 

where &, 8, and Y,, are the kth, the mth and the nth non-negative roots of 

(B, f &) @k cos 2ak = (a,” - BIB,) sin 2& 

(Bs + B4) 8, cos Zj?, = (pi - B&J sin 28, 

(B, + B6) lin cos 27, = (7,” - B&J sin 27, 

respectively, and the coefficients Bi (i = 1,2,. . . ,6) are defined as 

(1 la) 

Wb) 

(llc) 
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It follows from equations (10) and (11) that 

1 p 

s 

X2(x) dx = a(a: + B:) (ak’ + %) + (a/2)(4 + Bz)(c(k2 + J4 4) 

c,= k ai(akz + B$ 
> 

-(I 
= 2a, a, = 0 

b 

1 

s 

y2b) dy = b(#?tt + B:) @t + B2,, + (b/2) (B3 + B,)(Bi, + &B4) 
r,= m 

/%(Bi + B:) 

9 

-b 

= 2b, PO = 0 

1 - 

s 
Z,‘(z) dz = c(Y,~ + B:) (rf + B;) + (42) (B, + Be) (rf + J&B,) 

E,= rib’.” + B:) 
> 

--E 
= 2c, Yo = 0 

and 

x,(-a) = 1, x,(u) = ( a~_+~~2)cos 2ak 

Y,(-b) = 1, Y,(b) = ($_+;;jcos2Pa 

2,(-c) = 1, Z”(C) = ($:;;3 cos 27” 

(134 

1 W) 

(144 

(14b) 

(144 

The solution to the system of equations (5), (6) and (7) can now be written down directly from the 
general expression (16) given in [3]. The result is 

W, y, z, t) = jio T,jtx3 Y, z, t) + $ ; ; AkmnXk(X) UY) Z”(Z) e-lgmnKf 

(k=m=n#O) 

x,(x) J’ii.~) z,(z) [F(x, Y, z) - i T,& Y, z> o,] dx dy dz 
j=O 
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where 

and the T,,(x, y, z, t) functions are defined by the system of 

a2 T9i 

8X2 

a2T,j + azT,j 6,j -- 
+ i3y2 

azz + FQ(x.~>~,~) = 0 ((Xl < % /yl<b, /Z/KC; j=O,1,2 ,..., 6) (18) 

(16) 

(17) 

( - )‘K ~ + hiToj = 6ijf;(Y, Z, t) (x = (-)‘a, ly} < b, 121 < c; i = 1,2) (19a) 

(-)‘X: ~ + hiToj = 6ijfi(X, 2, t) (Ixl-0, y=(-)%, lzI<c; i = 3,4) 0’ = 0,1,2 ,..., 6).(19b) 

( -)‘x: ~ + hiToj = SijfifXl Yt t) @/<a, lyl<b, z=(-)‘c; i=5,6) (19c) 

An expression alternative to (15) and in which the source functions fi(i = 1,2,. . . ,6) and Q 
appear more explicitly follows from the genera1 expression (17) of [3] as 

T(x, Y, z, t) = f. T,@, Y, 2, t) + ff f f A,,,,, -G(x) KAy) Z,(.4 e- AZmnXf . 

&ln,“,+“o: 

1 
dx dy dz 

c b c 

1 -- 
K%nt,, %iY) z,(z) {.6(x z,o) + Xk(a)f2(Y, z, 0)) dy dz 

b c 

+ ES Y,b’) -%(z) (fh 2, T) + xkfa)f2b, z, T>> dy dz 
-b -c 

+ xkb) &dZ) { fdx, Z, 7) + Y,(&f&, z, T,> dx dz 
-12 --c 
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It is to be noted that the expressions (15) and (20) are not valid in the event of hl = h, = h3 = 
h4 = h, = h, = 0, The corresponding expressions for the parallelepiped in this particular case 
can be readily written down by use of the general results given by equations (22a) and (22b) in [4] 

Another expression alternative to (15) follows from [3] as 

While the T&C, y, z, t) functions no longer appear in this expression, the usefulness of (21) is limited 
to the particular case in which the time-dependent source functions fi(i = 1,2,. . . ,6) and Q are 
instantaneous pulses at zero time. The convergence of (21) is not uniform unlessA = 0 (i = 1,2, . . . ,6). 
On the other hand, expressions (15) and (20) converge unifo~ly and at a faster rate than (21) 
and are especially well suited in the event thatf;, and Q are continuous pulses released at zero time. 
Some special cases of (21) can be found in [S). 

SOLUTIONS FOR Toj (x, y, z, t) 

The so called p~udo-steady fictions of order zero, T&C, y, z, t) (i = 0, 1,2,. . . ,6), appearing 
in (15) and (20) are yet to be determined. To this end, we first defme three finite transforms as 
follows : 

(a) Finite trigonometric transform with respect to x: 

t,#, Y, z, t) = j T&G Y, z, t) &Cd dx Gw 
-11 
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the inverse transform being 

T0j(x, Y9 z, l) = f Ck x,(x) TOj(k, Y, z, l) PW 
k 

where Ck and x,(x) are given by (13a) and (lOa), respectively, and the summation is taken over the 
non-negative roots of (1 la). 

(b) Finite trigonometric transform with respect to y : 

7$x, m, z, 0 = 51 T&c Y, z, t) Y,(Y) dy 
-b 

(234 

the inverse transform being 

&j(X, .Y, 2, t) = $J D, Y,(Y) T$(x, m, Z, r) (23b) 
m 

where D, and Y,(y) are given by (13b) and (lob), respectively, and the summation is taken over the 
non-negative roots of (1 lb). 
(c) Finite trigonometric transform with respect to z : 

Toj’oj(& J’v 4 t) = i &j(X, Y, Zt t) Z,(Z) dz (244 
-C 

the inverse transform being 

Toj(X, _Y, Z, t) = 2 En Z”(z) ToXX, YT ‘9 ‘1 
n 

Wb) 

where E, and Z,(z) are given by (13~) and (lOc), respectively, and the summation is taken over the 
non-negative roots of (11~). These three sets of transform pairs enable the determination of the 
ToAx, y, z, t) functions in a particularly concise manner. For convenience let 

U(x, Y, z, t) = TJ,(x, Y, 6 0 + To&, Y? 6 t) Pa) 

Q, y, z, 0 = To&, Y, z, 0 + To& Y, z, t) GW 

W(x, y, z, t) = Tos(x, Y, z, t) + To&, Y, z, 0. (25~) 

Determination of T&x, y, z, t) 
From (18) and (19), with j = 0, the differential equation and the boundary conditions defining 

To& Y, z, t) are 

a27& a27& aq,, 1 - - 
ax2 + ay2 + a22 - + ,Q(x, y,z,t) = 0 (1x1 < a, 1~1 < b, (~1 < cl P-3 

+ h,T,, = 0 (~=(--)'a, lyl <b, IzI cc; i= 1,2) (274 

+ hiT,, = 0 (1x1 < 4 y = (--)‘b, IzI < c; i = 3,4) (27W 

+ h,T,, = 0 (Ixl<a, jyl<b, z=(-)‘c; i=5,6). (274 
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The transformation of the system of (26) and (27) first by (22a) and then by (23a) results in 

a2%o(k m, z, t) 
a2 

- $-f T$,(k, m, z, t) + k Q*(k, m, z, t) = 0 ((zl < 4 

(-)+! + hi~;o=O (z=(-)ic; i=5,6) 

where 

(28) 

(30) 

Under the restriction that h,, h,, h,, h,, h, and h, are not to be simultaneously zero, the solution 
to the system of (28) and (29) is obtained as 

f&,(k, m, z, t) = &[lsinh*,,,(z - $T(k,m,z’,t)dz’ 

0 

+ 1 {H(z’) Lkm(z’, z) + H( - z’) Lk,,,(z, z’)} Q*(k, m, z’, t) dz’ 1 (31) 
--c 

where 

(32) 

and H(z) is the Heaviside unif function. The successive inversion of (31) by (23b) and (22b) gives the 
result 

E 

+ 5 { &‘) ‘&,,(Z’, z) + H( -z’) Lkdz, Z’)} Q(x, Y, Z’, t) dz’ 1 x,(x) K(Y) dx dy. (33) 
-C 

It is to be noted that Too can be obtained in two alternative forms by the repeated use of the trans- 
formations (22a) and (24a), or by (23a) and (24a). A practical choice from among the three forms of 
the solutions for Too(x, y, z, t) should be the one involving the simplest two of the three frequency 
equations (lla), (llb) and (11~). 

Determination of U(x, y, z, t) 
From (18) and (19) with j = 1,2, and from (25a) it follows that the differential equation and the 

boundary conditions for U(x, y, z, t) are 
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2 

g+dZU+$) 

aY2 
(1x1 < a, 1~1 < b, IzI < c) 

(-)‘Kg + h,U =fi(y,z, t) (x = (-)‘a, ]yJ < b, IzI < c; i = l,2) 

(-)dg + h,U = 0 (1x1 < a, y = (-)‘b, IzI < c; i = 3,4) 

(-)iK$ + h,U = 0 (Ixl<a, ly(<b, z=(-)‘c; i=5,6). 

The system of (34) and (35) is now transformed successively by (23a) and (24a) to give 

a2 v2 ( 1 --mn 
ax2 a2 

u*(x, m, n, t) = 0 (1x1 < a) 

(-)‘K!g + hju* =P(m, n, t) (x = (-)‘a; i = 1,2) 

where 

(34) 

(35a) 

(35b) 

(35c) 

(36) 

(37) 

(38) 

Under the restriction that h,, h,, h,, h,, h5 and h, are not to be simultaneously zero, the solution 
to the system of (36) and (37) is obtained as 

U*(x, m, n, t) = KMa(v3 [(v,co~hv.. (1 -z) + B,sinhv, (I - $]f?(m,n,l) 

+~,coshv~~(,+~)+~~sinhv~(,+a)}f:(m,n,t)l (39) 

where 

M(v,) = (vf. + B,B,) sinh 2v,, + v&B1 + B,) cash 2v_ 

Inverting (39) by (24b) and (23b) in succession we have 

(40) 

With& = 0, U becomes T,,(x, y, z, t) and withf, = 0, U becomes 7&(x, y, z, t). 
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From (18) and (19) withj = 3,4, and from (25b) it follows that the differential equation and the 
boundary conditions for V(x, y, z, t) are 

a2v PF/ a2v 

ax2 + ay2 
-+,z,=o (1x1 < a, Iv\ < b, 121 < c) (42) 

(-)‘K~ + hiT/ =2 0 (x = (-)‘a, lyl < b, Jz( < c; i = 1,2) (43a) 

(-)‘K$ + k,V -fi(x,z,t) (1x1 < a, y=(-)“b, @c; i-3,4) (43b) 

(-)‘K~ f hil/ = 0 (1x1 < a, lyl < b, z = (-)ic; i = 5,6). (43c) 

Transforming the system of (42) and (43) by (22a) and (24a) we have 

&k, y, n, t) = 0 (1~1 < b) (4) 

Iv = (-)‘b; i = 3,4) 

where 

ci?fl Kz 
2 

p=z+$. (46) 

Under the restriction that h,, h,, h3, h,, h, and h, are not to be simultaneously zero, the solution 
to the system of (44) and (45) is obtained as 

I% Y, n, f) - -~[L”coshf~~(1-~)+B~Sinht,(1-~)~~(k,n,t) 

+ {ckRcoshr,(l + i) + B,sinhc,, (1 + g)].&k,n,tj (47) 

where 

iV(~“kn) = (.$,, + B3B4) sinh 2ckn + ckkn(B3 + B4) cash 2~~. (48) 

Inverting (47) by (24b) and (22b) successively we get 

m 

I+, y, 2, t) = 
cc0 

; z X&x) Z,(z) ’ 

kn 
k n 

.[{E,coshq” (1 -3 + B,smhck, @ - ;)] j j f3(X,z,t)Xk(X)Z,(z)dxdz 

-a --c 

+ ~&OShf,. (1 + 9>+ B,Si*h&, (I + 5)) j j ~~(x,z,t)Xr(X)Z.(Z)dxdz]. (49) 

-(I --e 
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With f4 = 0, T/becomes T’&x, y, z, t) and with f3 = 0, V becomes To4(x, y, z, t). 

Determination of W(x, y, z, t) 
From (18) and (19) withj = 5, 6, and from (25~) it follows that the differential equation and the 

boundary conditions for W(x, y, z, t) are 

a2w + a2w + a2w __ __ -= 0 
ax2 ay a22 

(1x1 <a, [Y( < b, 1~1 < cl (50) 

(-)‘Kg+hiW=O (x=(-)‘a, Jyl<b, lzl-cc; i = 1,2) (51a) 

(-)‘Kg+hiW=O (Jxlca, y=(-)‘b, lzl<c; i = 3,4) (51b) 

aw 
(-)‘K~ + hiW = fi(X,Y,t) (/Xl < a, IYI < b, z = (-)‘c; i = 5,6) (51c) 

Transforming the system of (50) and (51) first by (22a) and then by (23a) we obtain 

82 P;~ 

( ) az2- c2 
i JV*(k,m,z, t) = 0 (jzl < c) (52) 

(-)iK T + hip* =fl(k, m, t) (z = (-)‘c; i = 5,6) (53) 

where ,&, is defined in (30). Under the restriction that h,, h,, h,, hq, h, and h, are not to be simul- 
taneously zero, the solution to the system of (52) and (53) is obtained as 

@*(k, m, z, t) = &[{pk,,,coshCkn (I - :) + B,sinhpLk, (1 - $1 j:(k,m,t) 

+ Kc,,, cash pkm 

i t > 

1 + F + B5 sinh &, (1 + $j_?$(k m, 0) (54) 

where 

&km) = (&,,, + BA) sinh 2&,, + k,& + &J cash 2fikw (55) 

Inverting (54) by (23b) and (22b) in succession we have 

W(x,y,z,r)= $2 (;)zxdx)%(Y) 

m 

. fs(x, Y, d xk(x) Y,(Y) dx dy 

+ pkm cash pkm fs(x, Y, t) x,(X) Y,(Y) dx dy 1 . (56) 

With fs = 0, W becomes Tos(x, y, z, t) and with fs = 0, W becomes T&x, y, z, t), This completes 
the determination of the 7’,‘,,(j = 0, 1,2,. . . ,6) functions. 
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(1) Two-dimensional problems 

PARTICULAR CASES 

An important special case arises when the functions fi, fi, f3, f4, F and Q are independent of 
z and, in addition, the faces z = +c are insulated, i.e. h, = h, = fs = fs = 0. This is the case of the 
two-dimensional unsteady heat flow in the rectangle with sides 2a and 2b. To obtain the correspond- 
ing general expressions for this case we note that, in the event of h, = h, = 0, the frequency equation 
(11~) reduces to 

and from 

sin 2y, = 0 (57) 

E 

5. = 5 Z,(z) dz = z,z”‘;) sin Yn (58) 
n 

-E 

we have 

sin 2y, 

in=cY. (59) 
n 

From (57) and (59) it follows that 5, = 0 for all n except for n = 0, corresponding to ye = 0 which is 
also a root of (57). For y. = 0 we obtain Z,(z) = 1, co = 2c and E,’ = 2c. Furthermore, since 
fi(i = 1,2,3,4), F and Q are now independent of z, only the term corresponding to n = 0 contributes 
to the n-summation in (15) which becomes 

(k=m#O) 

4 

XkH Y,(Y) [F(x, Y) - 
c 

T,,k Y, 011 dx dy 
j=O 

- f: /e’s+ ]a lbXk(x) Y~(y)aToJ~~Y’r)dxdydr] (60) 

j=O 0 

where 

Similarly, expressions (20) and (21) reduce to 

T(x, Y, t) = j$o T,,k Y, t) + 2 f ckD,,$k(x) X&Y) e-AsmKt 

(k&n?O) 

(61) 
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b u 

1 -- 
fxn [S Y,(Y) {fi(Y> 0) + xk(a) fz(Yr o>] dy + s xk(x) (hk 0) + Y,(b) .h(X> 0)) dx 

-b 
I 

-a 

XL4 Y,(Y) Q(x, Y, 4 dx dy 

b ll 

+ s r,(Y) (f,(Y, f) + xk@) .fz(Y, 7)) dy + 
-b s xk(x) {f&f, r) + Y?(b) hk z)> dx (62) 

-Cd 

and 

n b 

T(x, y, t) = f f ckD,,,xk(x) &,(y) e-n’mKr xktx) L(Y) Ff& 3’) dx dy 

xk(x) %h’) Qk Y, 7) dx dY 

-a -b 

6 a 

+ 

s 

Y,dv) ( fi(Yt r) + xk(a) f&Y, r)) dy + 

s 

Xk(x) (fi(x> 9 + %P) MS 4) dx 1 I dz 163) 

-b 

respectively. Since now 

[ siIIhw,$ - Ejdl’ + ,;.(Zf.,‘,Z) + H(-Z’)~km(Z,Z’))dZ’ = 2 

expression (33) becomes 

(64) 

Xkfx) Y,(Y) Qbv Y, tf dx dY (65) 

which, in general, is not well-suited for numerical work. A more suitable expression is readily obtained 
as 

+ [ iHti’) Aktfr Y) + ff( -Y’) A,@, Y’)] t&, Y’, t) dY’1 x,(X) dx 
-b 

(66) 

where 
b 

?fk = ; 0 ak (67) 
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Alternatively, 7’,‘,,(x. y, c) can also be expressed as 

and 

respectively. Expression (72) gives the sum of &,(x, y, t) and &(xJ y, Q, and expression (73) gives 
the sum of T&x, y, t) and TO&, y, t). The function W is, of course, zero in this case. 

(2) One-dimensional problems 
Another special case of practical importance is the one in which fi,f2, F and Q are i~de~ndent of 

y and z and, in addition, the faces y = i b and z - + c are insulated, i.e., h, = h4 = h, = h, = f3 = 
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f4 = f5 = fs = 0. This is the case of the one-dimensional unsteady flow of heat in a slab of thickness 
2a. Expression (60) then becomes 

Likewise, the expressions alternative to (74) follow from (62) and (63), respectively, as 

7(x, t) = t ToAx, t) + f CkXk(x) e- * Kf 

j=O k=l 
=+){ j xk+) bx) - -&%d+-ix 

-a 

- & 
k 

+ x,(u) f2(o) + xk(x) t& 7) dx + fib) + xk@) fib) 

0 -(I 

and 

xk(x) p(X) dx 

--U 

X/c(x) Qh 7) dx + fib) f xk(a) h(r) 

(74) 

(75) 

(76) 

The fictions To@, t) appearing fn (74) and (75) readily follow from the corresponding expressions 
in the two-dimensional case. Thus, (65) or (66) yields 

m Ck c 2 XkM Q(x, t) dx. 

k=l 

(77) 

This expression, however, is not well-suited for numerical work. On the other hand, expression (69) 
gives Too@, t) in closed form as 

x 

- x) Q(x’, t) dx’ + 
a 

K(B, + B2 + BIB,) 
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Finally, U(x, t) follows readily from (72) as 

With fr(t) = 0, expression (79) gives 7&(x, t) and, with f2(t) = 0, it gives 7&(x, t). The functions V 
and W are, of course, zero in this case. 

(3) The special problem ofCobble 
The problem treated by Cobble [l] is a special case of the two-dimensional problem the solution 

of which is given in the form expressed by (63). To demonstrate this we let h, = h, = h, = h, = h 
and fr = f2 = f3 = f4 = 0 in (63). Furthermore, we replace 2a by I, 2b by a, (i/2 + x) by x, (a/2 + y) 
by y, and let 

a; = 2a,, Pb = 2h 

Equations (12a) and (12b) then give 

Expressions (1Oa) and (1Ub) now read 

X,(x) = cos Cr; ; + 
0 

N,iV) . x -sm ai I 
a; 0 

Y,(y) = toss:, $ + 
0 

&,(a) -sin & f 
B:, i 0 

where, in view of (1 la) and (11 b), a; and B:. are, respectively, the non-negative roots of 

tan ai = 2a~N~~(~ 

(a;02 - N&O * 

and 

2KJ5&) 
tan Ba, = (P,)2 

- N&(a) 

Equations (13a), (13b) and (61) now become, respectively, 

1 
- = & &4)” + N&(E) + 2Jb,(Ol, 
G 

= I, 

1 

D, - 2(8kY 
- a k%J2 + %,(a) + 2Na,(a)l, 

= a, 

(81) 

(844 

VW 
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and 

(85) 

In view of the substitutions (4) and (9) as applied to the problem under consideration, expression (63) 
finally leads to 

T’(x, y, t) = fJ f C,D,X,(x) Y,(y) e-(Azm+k)K’ isg X,(x) K,(Y) F(x, Y) dx dy 
k m 

1 L1 +~~eU20+bf\ \ ml x,(x) Y,(Y) Q’(x, Y, 7) dx dy 
1 I dz . (86) 

00 

Identifying the quantity 

lGm+l+ #j2 + (fy + hj 
appetiring in (86) with $,,. given bp equation (39) in [l], and in view of (81), (82), (83) and (84), we 
have the equivalence of the expression (86) and the one given in [l] by the combination of equations 
(45), (38), (39), (40), (37), (36), (33), (32) and (22) of [l]. It should be noted that the eigenvalues &,, 
and p, appearing in equation (45) of [l] correspond, respectively, to the eigenvalues ah and pm 
defined by equations (83a) and (83b), and that the use of the same symbol p in [l] for the two (and, 
in general, different) sets of eigenvalues a’ and /?’ may lead to ambiguous interpretation of expression 
(45) of [l] in the course of numerical computation. 

Lastly, it is to be noted that the expressions (60) and (62) may also be readily specialized for this 
problem leading to expressions alternative to (86) and better suited for the treatment of cases where 
Q’(x, y, t) is a continuous pulse released at t = 0. 
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RksumGOn prtsente des expressions g6nCrales pour l’kchauffement tridimensionnel et instationnaire 
d’un parallClipipMe rectangle plein fini sous l’influence d’une source de chaleur volumique arbitraire et 
d’une distribution arbitraire de temptrature initiale !orsque l’on impose sur les six faces planes des 
conditions aux limites du type convectif d6pendant du temps. Ces expressions, donnees sous diffkrentes 
formes et non disponibles jusqu’8 pr(tsent, contiennent la solution de nombreux probMmes sp&iaux, 
technologiquement importants. On en deduit les expressions g&n&ales correspondantes pour le rectangle 
et pour la plaque comme cas limites. On montre que le problhme particulier trait6 r&emment par Cobble 

est un cas trds special des rtsultats obtenus ici pour le parall6lipiphde. 

Zusammenfassung-Die Untersuchung liefert allgemeine Ausdriicke fiir das Problem der dreidimension- 
alen, instationgren Aufheizung eines endlichen, rechtwinkeligen Festkiirperparallelepipeds unter dem 
Einfluss einer beliebigen Wtiequellendichteund Anfangstemperaturverteilung, wenn an den sechs 
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ebenen Oberflachen zeitabhangige Randbedingungen dritter Art (Konvektion) vorgeschrieben werden. 
Diese, in verschiedener Formulierung vorgelegten, und bisher noch nicht bekannten Ausdrticke, 

enthalten die Losung zahlreicher spezieller Probleme von technologischer Bedeutung. Entsprechende 
allgemeine Ausdrticke ftir das Rechteckprisma und die ebene Platte werden als Grenzfdle abgeleitet. 

Es zeigt sich, dass das ktirzlich von Cobble behandelte Sonderproblem einen sehr speziellen Fall der 
hier fiir das Parallelepiped abeeleiteten Ergebnisse darstellt. 

AH~~T~~WSI-II~HB~A~ITCFI 06uxe Bnpameaaa ~JIFI rpexhrepnoro,necranaonapnoro narpesa 
HOHe'lHOrO TBepAOrO IIpHMOyrOJIbHOrO IIapaJIJIeneIIEiIIeAa IIpI4 IIpOH3BOJIbHOM 06xeMHOM 

ElCTOYHIlKe TeIIJIa M IIpM IIpOI43BOJIbHOM paCIIpeJ(eJIeHHH HaqaJIbHOti TeMnepaTypbI, KOrfia Ha 

ILleCTElItOBepXHOCTRX3a~alOTCHKOHBeHTElBHbIe PpaHMqHbIeyCJIOBEIR,3aBkICR~He OTBpeMeHB. 

3TYI BhIpameHHR IIpeACTaBZeHbI B pa3JIWIHbIX BIlAaX Pi paHee He 6b1nn I13BeCTHbI, a TaKPKe 
conepmaT pelueme pa3nwimx TexHo~ormecm4x 3aAas. B KagecTBe npenenbHbIx cnysaeB 

BbIBeAeHbI COOTBeTCTByIOWHe o6wae BbIpameHWI AJIH IIpRMOyrOJIbHHKa II IIJIEITbI. nOKa3aH0, 

9TO HeAaBHO paCCMOTpeHHaH ro66neM 3aAaqa RBJIReTCR %CTHbIM CJIyqaeM p3CCMOTpeHHbIX 

3AeCb pe3yJIbTaTOB AJIFi IIapaJIneJIelIlUleAa. 


