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Abstract—General expressions are presented for the three-dimensional and unsteady heating of a finite
solid rectangular paralielepiped under the influence of an arbitrary volume heat source and an arbitrary
initial temperature distribution when convective type of time-dependent boundary conditions are pre-
scribed on the six plane surfaces. These expressions given in various forms and not available hitherto,
contain the solution of numerous special problems of technological importance. Corresponding general
expressions for the rectangle and for the slab are deduced as limiting cases. The particular problem treated
recently by Cobble is shown to be a very special case of the results derived here for the parallelepiped.
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NOMENCLATURE

coefficient defined by equation (16);

half length of parallelepiped in x-direction;

Biot numbers defined in equations (12);

half length of parallelepiped in y-direction;

half length of parallelepiped in z-direction;
coefficients defined in equations (13);

initial temperature distribution in parallelepiped;

source functions at the surfaces x = —a, x = a, respectively;
source functions at the surfaces y = —b, y = b, respectively;
source functions at the surfaces z = —¢, z = ¢, respectively;

surface source functions related to f; by equation (8);
Heaviside unit function of x;

heat-transfer coefficients on the surfaces x = —a, x = a, respectively;
heat-transfer coefficients on the surfaces y = —b, y = b, respectively;
heat-transfer coefficients on the surfaces z = —c, z = ¢, respectively;

1,2,...,6 (unless otherwise stated);
0,1,2,..., 6 (unless otherwise stated);
thermal conductivity;

constant (real, positive or negative);
0,1,2,...,00;

Green’s function defined by equation (32);
function defined by equation (40);

0,1,2,...,0;
function defined by equation (48);
0,1,2,...,:;
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function defined by equation (55);

internal heat source per unit time and per unit volume;

internal source related to Q by equation (9);

unsteady temperature distribution defined by equations (1), (2), (3), and
related to T by equation (4);

unsteady temperature distribution defined by equations (5), (6), (7), and
given by expression (15), (20) or (21);

pseudo-steady temperature distributions of order zero, defined by equations
(18) and (19);

pseudo-steady temperature distribution defined by equations (26) and (27),
and given by expression (33);

two-dimensional unsteady temperature distribution given by expression (60),
(62) or (63);

two-dimensional pseudo-steady temperature distribution given by expression
(65), (66) or (69);

one-dimensional unsteady temperature distribution given by expression (74),
(75) or (76);

one dimensional pseudo-steady temperature distribution given by expression
(77) or (78);

time;

defined in equations (25);

pseudo-steady temperature distribution defined by equations (34) and (35),
and given by expression (41);

two-dimensional pseudo-steady temperature distribution given by expression
(72);

one-dimensional pseudo-steady temperature distribution given by expression
(79);

pseudo-steady temperature distribution defined by equations (42) and (43),
and given by expression (49);

two-dimensional pseudo-steady temperature distribution given by expression
(73);

pseudo-steady temperature distribution defined by equations (50) and (51),
and given by expression (56);

Cartesian coordinates;

X(x), Y(3), Z,(z), eigenfunctions defined by equations (10);
X,(a), Y,(b), Z,(c), defined in equations (14).

Greek symbols
s P> Vo eigenvalues defined by equations (11);
0ij> 00j» Kronecker delta;
€xms defined by equation (46);
Lo defined by equation (58) or (59);
N defined by equation (67);
K, thermal diffusivity;

Ay, ¥, Green’s function defined by equation (68);
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Ademms defined by equation (17);

Aterms defined by equation (61);

Hicms defined by equation (30);

Vs defined by equation (38);

& defined by equation (70);

Q.(x, x), Green’s function defined by equation (71);

(\i( * () finite trigonometric transforms of ( ) defined by equations (22a), (23a), (24a),

respectively.
INTRODUCTION

IN A recent issue of this journal Cobble [1] studied a transient heat conduction problem in a two-
dimensional rectangular region under the influence of an arbitrarily prescribed internal heat source
and with arbitrary initial condition. The boundary conditions employed in [1] are assumed to be
homogeneous and of convective type, with equal heat transfer coefficients on the four edges. In the
equation of heat conduction, Cobble [1] included a heat sink term proportional to temperature and
representing the heat loss by convection from the two lateral sides of the rectangle.

In this study we consider a more general and complete problem for a rectangular parallelepiped of
side lengths 2a, 2b, 2c and present, in various forms, the general solution for the unsteady temperature
distribution. From these, the solution of numerous special unsteady and steady heat flow problems
in rectangular regions follow readily through appropriate specialization of the volume- and surface
heat sources, and the boundary- and initial conditions employed in the present study. Some of these
special problems have been solved by Carslaw and Jaeger [2]. The end result expressed by equation
(45) of Cobble [1] is also readily deduced as another special case from one of the expressions estab-
lished here for the parallelepiped.

PROBLEM STATEMENT
Consider a three-dimensional rectangular stationary region enclosed by the planes x = +a,
y = +b,z = +cintheCartesian coordinate system Oxyz. The flow of heat by conduction is governed
by the equation
3T + T 4 T
x> oy*  oz?
(x| <a, |y|<b, |z|<¢, t>0)

T’
ot

1 1
kT’ + "K’ Q'(x’ ¥, 2, t) = ; (1)

where T' = T'(x, y, z, t) is the unsteady temperature distribution and kT represents a heat source
proportional to temperature. Associated with (1) are the boundary conditions

’

(—)‘K%+hiT’=fi(y,z,t) (x=(~Ya, |y|<b, |z]<ec t>0; i=12 ()

(-—)‘K% +hT = filxz0 (x| <a y=(=)b |z|<ec, t>0;i=3,4) (2b)
. oT ; ,
(-)K + T = filx,y,t) (x| <a |y|<b z=(=Ye t>0;, i=56 ()

0z

where h; > 0 (i=1,2,..., 6} are the surface heat-transfer coefficients and fi(i=1,2,...,6) are
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integrable functions prescribed on the six surfaces. The statement of the problem is completed by
specifying the initial conditions as

T =F(x,y,2) (|x|<a [y <b |z|<c t=0) (3)

where F(x, y, z) is a prescribed integrable function representing the initial temperature distribution
in the parallelepiped.
The problem can be restated in a somewhat simpler form by use of the well-known substitution of

T(x,y,2,8) = T(x,y,z, ) e ™ 4)
whereby the system of equations (1), (2) and (3) becomes
T T 8T

PR < Q(x,y,z t) = at (x| <a |yl<b |zl<e >0 (5
(- )‘K%T + T = fly,z,5) (x=(=Ya, |y|<b, |z]<c, >0, i=12) (6a)
oT

(— )»K_+hT fix,z,t) (x| <a, y=(=)blzl<e¢ t>0; i=34) (6b)

(~)‘K—é;+h,~T=fi(x,y,t) (x| <a ly|<b z=(=)¢, t>0; i=56) (6

T=F(x,y,z2) (x|<a |y <b |z]<c, t=0) N
where
fi=fie™  (i=12...,6) ®
Q Ql kxt (9)
SOLUTION

For the solution of T(x, y, z, t) from the system of equations (5), (6) and (7), we define the following
auxiliary functions

B

Xk(x)——-cosock(l+§)+—lsinock<1+E) k=0,12,..) (10a)

a O a
Y.() = cos f, (1 + %’)Jr %sin 8, (1 + %’) m=0,1,2..) (10b)

z B, . z
Z{z) = cos y, 1+Z +y~smy,, 1+E n=012..) {10c)

where o, B,, and 7y, are the kth, the mth and the nth non-negative roots of

(B; + B,) o, cos 2a;, = (2 — B,B,)sin 2, (11a)
(B3 + By) fmcos 2B, = (7 — B3B,)sin 26, (11b)
(Bs + Bg) 7, cos 2y, = (77 — BsBg)sin 2y, (11c)

respectively, and the coefficients B; (i = 1,2,.. ., 6) are defined as
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hia h,a
Bi=—% Bi="F%

hsb heb
Bi="% Be=7%

hsc h
Bi=% B=%

1 S Xi(a)dx = 9 + BD(E + B + @2)(B, + B)af + BBy

G af(af + B3)
= 24, o =10
b
L { yagyay PR+ B B2+ BD) + (b/2)(By + B)(Ba + BBy
D), BB+ BY)
= 2b, Be =0
1 ; 22(2)dz = c(y? + BH(y2 + B3 + (¢/2)(Bs + Bs) (72 + B 36)
e, v2(ys + BE)
=% 70=0

and

2 BZ
X(—a)=1, Xa) = (;?—"—%é;)cos 20,
x — D102

Y(-b)=1, Y b)= (%} cos 28,
m 324

v2 + B2
Z(—c)=1, Zc)= (———) cos 2y,
B.B,

397

(12a)

(12b)

(12¢)

(13a)

(13b)

(13c)

(14q)

(14b)

(14c)

The solution to the system of equations (5), (6) and (7) can now be written down directly from the

general expression (16) given in [3]. The result is

6 © 0o ©
T(x’ Y, 2, t) = 'Zo Toj(x, ¥z, t) + Z Z Z AkmnXk(x) Ym(y) Z,,(Z) e~ Afmnkt
J= m n
( =m=

n#0)
a

c

j‘ Xux) Y(y) Z,(2) [F(x, y,2) — i To{x,y,2,0]]dxdydz

It__—s‘v

a b

ot

_ Z j ¢ S X X, V,0) Zye) A8V 5 D 4 o dzde b sy

j=0 0 ~a —-b —c
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where
Agmn = CDpE, (16)

2 2 2
- (59
a b c
and the T (x, y, z, t) functions are defined by the system of

Py PTyy 8Ty,

Op:
PR R °"Q(x,y,z,t)=0 (x| <a, |yl<b lzg<e; j=01,2...,6) (18)

T .
(=YK + oy = 8ufn,20)  (x=(=Va, Pl <b |f<c; i=12) (19a)
i 576,- i . :
(—)K%7+h,-T0j=5ijf,{x,z,t) (x| <a, y=(=)b, |z|<c; i=3,4)}(=0,1,2,...,6)(19b)

0Ty, .
(——)‘K'—a_;!_*- hz%} = 5ijf;'(xsyat) (lx( <4a, ‘yt < ba z = (—)‘C; I= 536) (190)

An expression alternative to (15) and in which the source functions f{i = 1,2,...,6) and Q
appear more explicitly follows from the general expression (17) of [3] as

6 L)
T 1350= Y Tofo 20+ 2 Y Y A X3 Yoly) Z,(z) €™ St
i=0 (k’;m="::¢'6)
a b ¢
y j 5 X Yy09) Z,(2) [F(x, y.2) - ﬁ’;(—}-f-@] dxdydz
kmn

—}F_ [S j Ym(y) Z,,(Z) {fl(ys z, 0) + Xk(a)f2(y9 z, 0)} dy dZ

a b
+ g § X Yu5) (5%, 1,0) + Zu(O)fol, 3, 0)} dx dﬂ

t a
ABmn KT
'z'kmn S © [ S

—a ~b

b

g X)) Y, () Z42) Q(x. y,z, 1)dx dy dz
b ¢ -

=+ S S Ym(.)’) Z,,(Z) {fl(ya 2, T) + Xk(a)f2(y’ Z, T)} dy dZ
~b —c

+ S S Xu) Zu2) (Sl 0) + Yb) il 2,00} de dz
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a b
g Xi(x) Yy) {fs(x, 3, 7) + Z (e} folx, y, 1)} dx dyil dt} . (20)
—a b

It is to be noted that the expressions (15) and (20) are not valid in the event of hy = hy = h; =
hy = hs = hg = 0, The corresponding expressions for the parallelepiped in this particular case
can be readily written down by use of the general results given by equations (22a) and (22b) in [4]

Another expression alternative to (15) follows from [3] as

T(6 1,20 = 2 Y. Y, At XX) Yuly) Z,(z) ™ Hmnxt

[

S X(x) Y,.(y) Z,(2) F(x, y,z) dxdy dz

F—J;"\
|L’§g

a b ¢
st U S X, Yol0) Z4(2) Q. v, 7, 1) dx dy dz

—a—b ¢

N!K

|
%)

+

-+
n'(-—-—-"‘;a ‘ll..‘-—ja cl‘_'_’}w

Y.(») Z(2) { /iy, 2,7) + X@)f3(y, 2z, 7)} dy dz

[T TN

)

Xix) Z2) { f5(x, 2,7) + Yo(b)fulx, 2z, 1)} dxdz

| € ieney e,

Ll

+
Amenauaer T4

|
o

Xk(x) Ym(y) {fs(x, ¥ T) + Zn(c)fﬁ(xa Y T)}dx dy] dT,} ¢ (21)

While the T, (x, y, z, t) functions no longer appear in this expression, the usefulness of (21) is limited
to the particular case in which the time-dependent source functions fi(i = 1,2,...,6) and Q are
instantaneous pulsesat zero time. The convergence of (21)isnot uniformunlessf, = 0(i = 1,2,...,6).
On the other hand, expressions (15) and (20) converge uniformly and at a faster rate than (21)
and are especially well suited in the event that f; and @ are continuous pulses released at zero time.
Some special cases of (21) can be found in [5].

SOLUTIONS FOR Ty;(x, 2,1

The so called pseudo-steady functions of order zero, Ty{x,y,2,t) (j = 0,1,2,...,6), appearing
in (15) and (20) are yet to be determined. To this end, we first define three finite transforms as
follows:

(a) Finite trigonometric transform with respect to x:

Tofk, yz,0) = | Tofx v 2,1) Xyo0)dx (222)
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the inverse transform being
TOj{xa V. 2, t) = % Ck Xk(x) Toj(ka Y, z, t) (22b)

where C, and X,(x) are given by (13a) and (10a), respectively, and the summation is taken over the
non-negative roots of (11a).

(b) Finite trigonometric transform with respect to y:

b
TO*;’(xs m,z, t) = _‘. TOj(x’ .z t) Ym(y) dy (233)
—-b
the inverse transform being
TOj(x’ ¥, z, t) = Z Dm Ym(y) TO*;'(x’ m,z, t) (23b)

where D,, and Y,(y) are given by (13b) and (10b), respectively, and the summation is taken over the
non-negative roots of (11b).
(c) Finite trigonometric transform with respect to z:

’TOj(X7 Y, n, t) = _" TOj(x9 ¥, 2z, t) Zn(z) dz (24a)
the inverse transform being
To(% y,2,t) = 3, Ey Z,(2) To{x, y,m, 1) (24b)

where E, and Z,(z) are given by (13c) and {10c), respectively, and the summation is taken over the
non-negative roots of (11c). These three sets of transform pairs enable the determination of the
ToAx, ¥, z, t) functions in a particularly concise manner. For convenience let

U(X, ya z, t) = TOl(xa y» z, t) + T02(x’ y’ 2z, t) (253)
V(X, ya Z, t) = TO3(x7 y’ 2z, t) + T04(x, ya Z, t) (25b)
W(X, Y, z, t) = TOS(xs Y.z, t) + TOG(X’ Y, 2, t) (250)

Determination of Tyy(x, y, 2, t)
From (18) and (19), with j = 0, the differential equation and the boundary conditions defining
Too(x, y, z, t) are

2?T, 0°T, 02T, 1
izt 52t gQxyz)=0  (x<a pl<b [f<c) (26)
i aTOO i .
(=K P +hToo =0 (x=(=Ya, |y|<b, |z <e; i=12) (27a)
i a’IZ)O i i
(=YK 3y + hTyo =0 (x| <a, y=(=)b, lz] <e; i=234) (27b)
i aTOO i .
(—)K—Ez_+hiT0°=0 (x| <a, |y <b z=(=)e; i=56) (27¢)
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The transformation of the system of (26) and (27) first by (22a) and then by (23a) results in

orT* .k, ¥ 2 1
TTEmED _ Hin fgmz + £ 0mz0 =0 (<) o8)
i aTOO i i
(KT L hTay =0 = (—Yei i=56) 29)
where
Bim _ % | P
c—’; =%+ R (30)

Under the restriction that h,, h,, hs, h,, hs and hg are not to be simultaneously zero, the solution
to the system of (28) and (29) is obtained as

z

K;ka sinh g, (z; _ g)Qj"(k, m, 7, t)dz’
0

+ S {H(Z') Lin(Z’, 2) + H(—2') Lifz, 2)} O*(k, m, 2, 1) dz’] (31

Tk, m,z, 1) =

where

{ukm cosh i, (1 — g) + Bgsinh iy, (1 - g)} {ukm cosh g, (1 + z;) + Bgsinh py,, (1 + %)}
Lkm(21 zl) =

(Hiem + BsBg) sinh 244, + ftm (Bs + Bg) cosh 2y,

(32)

and H(z) is the Heaviside unif function. The successive inversion of (31) by (23b) and (22b) gives the
result

o0 a b z
Too(x, 7,2, 1) = 22 (f(—) CuD " X,() Y(y) S j [ g Sinth i (— - —)Q(x y. 2, 1)dz

+ S {H(2) Lz, 2) + H(=2) Lyy(z, 2} Q(x, , 2, 1) dZ'] X(x) Yn(y) dx dy. (33)

It is to be noted that Tg, can be obtained in two alternative forms by the repeated use of the trans-
formations (22a) and (24a), or by (23a) and (24a). A practical choice from among the three forms of
the solutions for To(x, y, z, ) should be the one involving the simplest two of the three frequency
equations (11a), (11b) and (11c¢).

Determination of U(x, y, z, t)
From (18) and (19) with j = 1, 2, and from (25a) it follows that the differential equation and the
boundary conditions for U(x, y, z, t) are
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o*U 62U U

5 + - 5 3 ? =0 (lxl < a, |y’ < b, lz[ < ¢) (34)
. oU ; .
(_)le+hlU :ﬁ'(y’z’t) (x:(_)'a’ IY’ <b’ IZJ <c, 1= 152) (353)
. oU ; .
(_)IKE +hU =0 (x| <a, y=(=)b, |z]<c; i=39) (35b)
. oU ; ,
(—)lKE +hU=0 (x| <a |y|<b z=(=Ye; i=5,6) (35¢)
The system of (34) and (35) is now transformed successively by (23a) and (24a) to give
a2 VIN -
(;7_)6‘2 — 717> U*(x, m,n, t) =0 (lx[ < a) (36)
. oU* .
(—) z.fi*(m’ n, t) (x = (_)‘a; i= 1’ 2) (37)
where
Van _ B
2 +? 2- (38)

Under the restriction that hy, h,, hs, hy, hs and hg are not to be simuitaneously zero, the solution
to the system of (36) and (37) is obtained as

U*(x,m,n,t) = K Ma(v ) [{v,,,,, cosh v, (1 - g) + B, sinhv,, (1 - g)} H(m, n, 1)
+ {an cosh v, (1 + g) + B, sinh v,, (1 + g)} f¥%(m,n, t)] (39)

M(Vpy) = (A, + ByB,)sinh 2v,., + v,.(B; + B,)cosh 2v,,, (40)
Inverting (39) by (24b) and (23b) in succession we have

Ulx, 20 = Z Z (&) vty o 2t

[{vm,, cosh v, (1 - %‘) + B, sinhv,, ( ’-‘)} § S £, 2,8) Yo(y) Zo(2) dy dz
+ {v,,,,, cosh v, (1 + g) + B, sinhv,, ( )‘%

With f; = 0, U becomes Ty (x, y, z, t) and with f; = 0, U becomes Ty,(x, y, z, t).

where

Q

[

S sz(y, z,1) Yo(y) Z..(z)dydz]. (41

le
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From (18) and (19) with j = 3, 4, and from (25b) it follows that the differential equation and the
boundary conditions for V(x, y, z, t) are

vV v 'V

DT T o0 (d<a bl<h H<o @)
(- )'Ka + hV =0 (x=(=Ya, Y <b, Jel<c; i=12) (43a)
(=YK + hV =flx,z10) (xd<a y=()b lzff<c; i=349 (43b)
(~)K %V +hV =0 (x| <a |y <b z=(=)e; i=5,6). (43c)

Transforming the system of (42) and (43) by (22a) and (24a) we have
(55— 5)Penno=0 i< (44
(—)'K%;Mf:f,. v =(=Yb; i=34) (45)

where

Under the restriction that hy, hy, hs, hy, hs and hg are not to be simultaneously zero, the solution
to the system of (44) and (45) is obtained as

ﬁ(k, y.nt) = ‘EN%B [{ek,, cosh ¢, ( z) + B, sinh ¢, ( )} [k, n, t)

+ {ek,, cosh ¢, (1 + b) + Bjsinh ¢, (1 + >} f4(k n, t)] 47

N(&) = (€2, + B3By)sinh 2¢;, + ¢,(B; + B,)cosh 2¢,, (48)
Inverting (47) by (24b) and (22b) successively we get

V(x,y,2,1) = 2 Z G;) 5&&’) Xux) Z(2)-
kn.
k n
'[{ékn cosh ¢, (1 - i—) + B, sinh e,,,, - —)} S S filx, 2, 0) Xi(x) Z (z) dx dz

+ {ek,, cosh ¢, (1 + %) + B,sinhg, (

)} S S Jalx, 2, ) Xix)Z {z) d x dz] (49)

where

Q-I‘t:



404 NURETTIN Y. OLCER

With f, = 0, Vbecomes Ty5(x, v, z, t) and with f; = 0, V becomes Ty4(x, y, z, t).

Determination of W(x, y, z, t)
From (18) and (19) with j = §, 6, and from (25¢) it follows that the differential equation and the
boundary conditions for W(x, y, z, t) are

PW PW  PW

e + P + 52 0 (x|<a |y<b |z| <o (50)
. OW . .
(~)lKE +hW=0 (x=(=)Ya |y<b |z|<ec; i=12) (51a)
0w ; .
(-VK——+hmhW=0 (x|<a, y=(=)b |z|<c; i=234 (51b)

oy

. OW :
(_)IKE + htW = fi(x9ya t) ('Xl <a, |YI < b’ zZ= (_)lc; = 55 6) (510)

Transforming the system of (50) and (51) first by (22a) and then by (23a) we obtain

P lim\
(~—2 - —2-"') Wk,m,z,0)=0  (jz] <o) (52)
0z c
(-)K a‘av; + hW* =fHkm) (z=(=)c; i=56) (53)

where p,, is defined in (30). Under the restriction that h,, h,, h3, hy, hs and hg are not to be simul-
taneously zero, the solution to the system of (52) and (53) is obtained as

WH(k,m, z, 1) = Eﬁ——)[{um cosh yy,, (1 — é) + Bg sinh p,, (1 - ;)} *k,m, 1)
km.

+ { Likm COS f13,, (1 + g) + B sinh gy, <1 + g)} FEk,m, t)] (54)
where
P(tiy) = (2 + BsBg) sinh 2p,, + tm(Bs + Bg) cosh 2p,,, (55)
Inverting (54) by (23b) and (22b) in succession we have

alN c\ C.D
Wi - E E ) = X, (x) ¥,
(x,y,2,1) 2 (K) Pl (%) Y,(»)

Z

Hu cosh i (1 - i) + By sinh oy (1 - )} S g Fu6 3, 8) X, Xy) dx dy

4

a b
+{uk,. cosh g (1 + g) + By sinh gy, (1 + g)} j j Fol%.3.0) Xilx) Yofy) dx dy]. (56)
—a —b
With fg = 0, W becomes Tys(x, y, z, t) and with f; = 0, W becomes Tyg(x, ¥, z, t). This completes
the determination of the Ty (j = 0,1, 2,.. ., 6) functions.
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PARTICULAR CASES

(1) Two-dimensional problems

An important special case arises when the functions f,, f, f3, fy, F and Q are independent of
z and, in addition, the faces z = 4 care insulated, i.e. hs = hg = f5 = f¢ = 0. This is the case of the
two-dimensional unsteady heat flow in the rectangle with sides 2a and 2b. To obtain the correspond-
ing general expressions for this case we note that, in the event of hg = hg = 0, the frequency equation
(11c) reduces to

sin 2y, =0 (57)
and from
( 2Z.(0)sin y,
= S Z,(5)dz = —%—l (58)
we have
[, = c%zy". (59)

From (57) and (59) it follows that {, = 0 for all n except for n = 0, corresponding to y, = 0 which is
also a root of (57). For y, = 0 we obtain Z,(z) = 1, {, = 2c and E, ! = 2c. Furthermore, since
f{i = 1,2,3,4), F and @ are now independent of z, only the term corresponding to n = 0 contributes
to the n-summation in (15) which becomes

T(x,y,t) = Z Tofx,y,1) + ZZ CiD, X i(x) Y, (y) e~ et

k= m#O)
a b 4
{S E X(x) Y (y) [F(x,y) — E Tofx,y,0)] dxdy
—a - j=0

t

a b
je“m'"j S X, (%) Y,y )5T°J{x %) 4y dy dr} (60)
) J

. ﬂ2 _mz
w6

Similarly, expressions (20) and (21) reduce to

where

T(x,y,t) = Z Tofdx, y,t) + ZZ C,D, X (%) Y, (y) e~ Mt

k= m# 0)

ﬂ j X,(x) Y, ) [F(x, yy — Q%2 0)] dxdy

Kiim

—-b
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Mot H S Xyx) Y(y) Qlx, y, 1) dx dy

—g —h

- % H 1) {/10.0) + Xila) £(3, O} dy + j X9 {£3(%,0) + Yolb) fuex, 0} dx]
m,gmi
0

b

m(J’) {/iy, D) + X{a) f(3, 1)} dy +

;ga.,_m,n

f&/—;

X430 {5 0) + Yalb) fax, 0} dx]dr} ©2)

and

T(x 1) = f S CDnXi(x) Vo) e ‘%{ g Xu(x) Yo(3) Flx, y) dx dy

t a
i

Lo { i, 1) + Xida) (. D} dy + S Xi(x) { fa(x, 1) + Yb) falx, D)} dx]df } (63)

-]
e T

b
S Xk(x) Ym(y) Q(X, Y T) dx dy

b

"-—-—-n-

b

respectively. Since now
) z oz : c
S sinh g, (; - E) dz' + S {H(Z) Lz, 2) + H(—2) Lipfz,2')} d2' = . (64)

km

0 ¢

expression (33) becomes

Too(x, 3. 0) = z z €D <X"("’Y>”S S X0 Y0) 00y, 0dxdy  (69)

which, in general, is not well-suited for numerical work. A more suitable expression is readily obtained
as
a

Toolx, y, t) = z )  Xi(x) Hjsmh M (— - —) O(x,y, 0 dy’

{H(V)Ak(y’y) + H(=)) Ay} Qlx, ¥, ) dy] Xidx)dx - (66)

e = (-Z)a (©7)

where
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1 ) . '
Ay, Y} = ﬁ(“-)“{ x cosh (1 - %) + B, sinh (1 - z)}{m‘ coshn, (1 + {))

+ B, sinhn, (1 + 9’5)} (68)

Alternatively, Tyo(x, y, £) can also be expressed as

@© b x
D !
Toolx, 3, ) = Z (“) £ ) Hj sinh &, (’;— - ’g) 0(x', y, 1) dx’
m —-b 0

{H(x) Qu(x', x) + H(—x) (x, )} Q(x', :v,t)dXJ Y.(y)dy  (69)

a
Q,(x, x) = ﬁé’){ ¢, cosh &, (1 - g) + B, sinh &, (1 - ;—C)} {Em cosh &, (1 + %)

+ B,sinh ¢, (1 + %)} (71)
Similarly, U{x, y, z, t} and V{x, y, z, 1) reduce to

Ulx,y.1) = Z (“) wiee T [{5 cosh £, (1 - ;‘) + Bysinh &, (1 - ;)}g Si(3.0) %) dy

u__.—-m

a

where

b
&

+ {5,,, cosh &, (1 + g) + B, sinh &, (1 )H 50, 8) Yuly) dy] (72)

and

3

Vix, y, 1) = Z G}) ﬁ«k) Xk(x)[{r}k cosh v, (1 — g) + B, sinh nk( - ;:)H- Salx, 1) Xpx) d

“@€

+{nk cosh 7 (1 + %) + Bysinhyn, (1 + %)}S falx, ) Xi(x) dx] (73)

respectively. Expression (72) gives the sum of Ty, (x, y, 1) and Ty,(x, y, #}, and expression (73) gives
the sum of Tps(x, ¥, t) and To,(x, y, ). The function W is, of course, zero in this case.

(2) One-dimensional problems
Another spemal case of practical importance is the one in which f 1 /-, F and @ are independent of
yand z and, in addition, the facesy = +bandz = +careinsulated,ie. . h; = hy = hy = hg = fy =
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fa = f5 = f¢ = 0. Thisis the case of the one-dimensional unsteady flow of heat in a slab of thickness
2a. Expression {(60) then becomes

2 © o f xt o 2
T(x,0) = Y Tofx,0) + kzl CiXi(x) e m‘(ﬂ’) { j Xux) [F(x) = Y, Tofx,0)]dx

j=0 i=0

ZS o S X(x )aT‘}’(X Y dx d} (74)
[4]

i=0 —a

a

Likewise, the expressions alternative to (74) follow from (62) and (63), respectively, as

a

2
T(x,t) = z Tofx, ) + Z C X (x)e % {S X{x) [F(x) - -I%(—%—Q(x, 0)] dx

2 Kt
-~ % [fi((» + Xy(a) £,0) + S A7) U () Qx 1) dx + fi(e) + Xifa) fz(f)}df]} (75)
0 —a

and

T(x,t) = iCkX,‘(x)e “? {S X(x) F(x)dx
k

+ %S e(«) U Xi(x) Q(x, D) dx + f1(z) + Xula) fz(t)] dr}. (76)
[} —-a

The functions T, (x, t) appearing in (74) and (75) readily follow from the corresponding expressions
in the two-dimensional case. Thus, (65) or (66) yields

AN 77
Tyolx, 1) = % ZE{% Xu(x) O(x, £) dx. 77

k=1

This expression, however, is not well-suited for numerical work. On the other hand, expression (69)
gives Tyo(x, £) in closed form as

K(B, + B, + 2B,B;)

Y[
+ [1 + B, (1 + g)]i [1 +B, (1 - %]Q(x’, ) dx’}. (78)

Toolx, t) = ;(‘S(x’ ~ x)Q(x, ) dx" + a
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Finally, U(x, t) follows readily from (72) as

a X X
e e 23132){[1 + B, (1 - E)]fl(z) + [1 + B, (1 + E)]fz(t)} )

With f,(t) = 0, expression (79) gives Ty,(x, t) and, with f,(¢) = 0, it gives Ty,(x, t). The functions V
and W are, of course, zero in this case.

(3) The special problem of Cobble

The problem treated by Cobble [1] is a special case of the two-dimensional problem the solution
of which is given in the form expressed by (63). To demonstrate thisweleth, = h, =hy=h,=h
and f, = f, = f3 = f, = 0in (63). Furthermore, we replace 2a by [,2b by a,(I/2 + x)by x, (a/2 + y)
by y, and let

oy = 20, Br = 2B, {80)
Equations (12a) and (12b} then give

1/hl 1
B, =B, = ‘2‘(}(') = §NB¢(I)
) (81)
1{ha 1
By =B, = 5(‘15‘) = ENB;(G)
Expressions (10a) and (10b) now read
Xi(x) = cos o G) + NB,‘(I) sin o G)
" (82)
- I X N Bi(a) . ' X
Y, {(y) = cos ﬁ"'(a) + _ﬁ;n sin 8, 2
where, in view of (11a) and (11b), o, and B, are, respectively, the non-negative roots of
, 20N (D
tan of = (—a;)—z-’?:—‘;\g—m ) (83a)
and
, 2BuNga)
e~ G )
Equations (13a), (13b) and (61) now become, respectively,
l
= =5~ [()* + N3 () + 2N ()],
Ck 2(dk) (8 4a)
=1 v =0
1 -—-g——[(ﬁ’ ) + Ni(a) + 2N (a)]
D, 2B - B B {84b)

=a’ ﬂ’o.—:o
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ORC)

In view of the substitutions (4) and (9) as applied to the problem under consideration, expression (63)
finally leads to

and

la

T,(xs ¥, t) = ; Z CkDka(x) Ym(y) e—(}.}m‘l*k)xt {S Xk(x) Ym(y) F(x’ y) dx dy
[}

t 1l a

+ -I'% e%m*")*f[g S X,(x) Y, () Q'(x, y, 1) dx dy] dr}. (86)

00

wicom{]

appedring in (86) with ¥,, , given by equation (39) in [1], and in view of (81), (82), (83) and (84), we
have the equivalence of the expression (86) and the one given in [ 1] by the combination of equations
(45), (38), (39), (40), (37), (36), (33), (32) and (22) of [1]. It should be noted that the eigenvalues S,
and f, appearing in equation (45) of [1] correspond, respectively, to the eigenvalues o, and f§,,
defined by equations (83a) and (83b), and that the use of the same symbol § in [1] for the two (and,
in general, different) sets of eigenvalues o’ and § may lead to ambiguous interpretation of expression
(45) of [1] in the course of numerical computation.

Lastly, it is to be noted that the expressions (60) and (62) may also be readily specialized for this
problem leading to expressions alternative to (86) and better suited for the treatment of cases where
Q'(x, y, t) is a continuous pulse released at t = 0.

Identifying the quantity
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Résumé—On présente des expressions générales pour I’échauffement tridimensionnel et instationnaire
d’un parallélipipéde rectangle plein fini sous I'influence d’une source de chaleur volumique arbitraire et
d’une distribution arbitraire de température initiale lorsque I'on impose sur les six faces planes des
conditions aux limites du type convectif dépendant du temps. Ces expressions, données sous différentes
formes et non disponibles jusqu’a présent, contiennent la solution de nombreux problémes spéciaux,
technologiquement importants. On en déduit les expressions générales correspondantes pour le rectangle
et pour la plaque comme cas limites. On montre que le probléme particulier traité récemment par Cobble
est un cas trés spécial des résultats obtenus ici pour le parallélipipéde.

Zusammenfassung—Die Untersuchung liefert allgemeine Ausdriicke fiir das Problem der dreidimension-
alen, instationdren Aufheizung eines endlichen, rechtwinkeligen Festkorperparallelepipeds unter dem
Einfluss einer beliebigen Wiarmequellendichteund Anfangstemperaturverteilung, wenn an den sechs
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ebenen Oberflichen zeitabhingige Randbedingungen dritter Art (Konvektion) vorgeschrieben werden.
Diese, in verschiedener Formulierung vorgelegten, und bisher noch nicht bekannten Ausdriicke,
enthalten die Losung zahlreicher spezieller Probleme von technologischer Bedeutung. Entsprechende
allgemeine Ausdriicke fiir das Rechteckprisma und die ebene Platte werden als Grenzfille abgeleitet.
Es zeigt sich, dass das kiirzlich von Cobble behandelte Sonderproblem einen sehr speziellen Fall der
hier fiir das Parallelepiped abgeleiteten Ergebnisse darstellt.

Anroranus—IIpuBonATCA OGIIMe BHIPaHeHNUA IIA TPEXMEPHOrO, HECTAIMOHAPHOIO HArpeBa
KOHEYHOT0 TBEPAOT0 MpPAMOYFOJBHOIO Napaluleenuefla OpU POUIBONBLHOM OGBEMHOM
MCTOYHMKE Tenyla ¥ IPU IPOM3BOJLHOM PaclpefeleHN HaYaJbHON TeMmepaTyphl, KOrga Ha
IIEeCTH IOBEPXHOCTAX 3alAI0TCA KOHBEKTMBHEIE IPAHUYHLIE YCIOBHA, 3aRUCHILIME OT BpeMeHU.
9TH BHIpAKEHUA NMPEJICTABIEHH B PASIMYHHIX BUAAX I PaHee He GELIN M3BECTHHl, A TaKMKe
COAEPIHAT pellleHNe PA3IMYHEIX TEXHOJOTHYeCKUX 3afady. B KauecTBe IpefielbHEIX CIy4aeB
BEIBEJIeHEl COOTBETCTBYIOIIMeE 0GIIMe BEPaKEHUA [JIA MPAMOYTOJbHUKA M IINTH. IIokasaHo,
4TO HelaBHO paccmoTpenHas ['0G6mem 3agaya ABIAETCA YACTHEIM CIYYaeM PACCMOTPEHHHIX
37eCh PesyabTATOB [JJIA Napajiiesenuess.
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